Transplacental delivery of retinoid: the role of retinol-binding protein and lipoprotein retinyl ester.
نویسندگان
چکیده
Retinoids are required for normal embryonic development. Both embryonic retinoid deficiency and excess result in congenital malformations. There is little understanding of the physiology underlying retinoid transfer from the maternal circulation to the embryo. We now report studies that explore this process using retinol-binding protein-deficient (RBP-/-) mice and mice that express human RBP on the RBP-/-) background. Our studies establish that dietary retinoid, bound to lipoproteins, can serve as an important source for meeting tissue retinoid requirements during embryogenesis. Indeed, retinyl ester concentrations in the circulations of pregnant RBP-/- mice are significantly elevated over those observed in wild-type mice, suggesting that lipoprotein retinyl esters may compensate for the absence of retinol-RBP during pregnancy. We also demonstrate, contrary to earlier proposals, that maternal RBP does not cross the placenta and cannot enter the fetal circulation. Overall, our data indicate that both retinol-RBP and retinyl esters bound to lipoproteins are able to provide sufficient retinoid to the embryo to allow for normal embryonic development.
منابع مشابه
Multiple pathways ensure retinoid delivery to milk: studies in genetically modified mice.
Retinoids are absolutely required for normal growth and development during the postnatal period. We studied the delivery of retinoids to milk, availing of mouse models modified for proteins thought to be essential for this process. Milk retinyl esters were markedly altered in mice lacking the enzyme lecithin:retinol acyltransferase (Lrat(-/-)), indicating that this enzyme is normally responsibl...
متن کاملPreferential release of 11-cis-retinol from retinal pigment epithelial cells in the presence of cellular retinaldehyde-binding protein.
In photoreceptor cells of the retina, photoisomerization of 11-cis-retinal to all-trans-retinal triggers phototransduction. Regeneration of 11-cis-retinal proceeds via a complex set of reactions in photoreceptors and in adjacent retinal pigment epithelial cells where all-trans-retinol is isomerized to 11-cis-retinol. Our results show that isomerization in vitro only occurs in the presence of ap...
متن کاملChylomicron remnant-vitamin A metabolism by the human hepatoma cell line HepG2.
The binding and metabolism of [3H]vitamin A-containing chylomicron (CM) remnants by the human hepatoma cell line HepG2 were studied. Mesenteric lymph chylomicrons were collected from [3H]retinol-fed rats and incubated with lipoprotein lipase to obtain CM remnants. At 4 degrees C, specific CM remnant binding was inhibited by an excess of unlabeled CM remnants. Specific binding predominated at lo...
متن کاملPathways of vitamin A delivery to the embryo: insights from a new tunable model of embryonic vitamin A deficiency.
Circulating retinoids (vitamin A and its derivatives) are found predominantly as retinol bound to retinol-binding protein (RBP), which transports retinol from liver stores to target tissues, or as retinyl ester incorporated in lipoproteins of dietary origin. The transport of retinoids from maternal to fetal circulation is poorly understood, especially under conditions of inadequate dietary vita...
متن کاملOpposing actions of cellular retinol-binding protein and alcohol dehydrogenase control the balance between retinol storage and degradation.
Vitamin A homoeostasis requires the gene encoding cellular retinol-binding protein-1 (Crbp1) which stimulates conversion of retinol into retinyl esters that serve as a storage form of vitamin A. The gene encoding alcohol dehydrogenase-1 (Adh1) greatly facilitates degradative metabolism of excess retinol into retinoic acid to protect against toxic effects of high dietary vitamin A. Crbp1-/-/Adh1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 286 5 شماره
صفحات -
تاریخ انتشار 2004